6 research outputs found

    Visualizing 3D geology in web browsers using X3DOM

    Get PDF
    This work presents an application for visualizing subsurface geological data in 3D in web browsers, using the X3DOM framework. The data supported is 3D terrain, vertical subsurface cross sections and subsurface measurements from wells. Data is visualized for the area of Svalbard. To avoid low-level development, we use X3DOM, which hides the details of graphics rendering in high-level, declarative XML syntax. The resulting application is cross-platform and runs on computers, tablets and mobile phones with adequate graphics capabilities. The work is a summarization of the first author’s master’s thesis

    Translating 2D art into Virtual Reality and comparing the user experiences

    Get PDF
    Recent advancements in virtual reality on the hardware and software front have made high-quality virtual reality experiences both cheaper, and easier to obtain. This paper explores how virtual reality changes the way a user experiences art and if virtual reality is suited as a medium for expressing art. Based on two existing artworks, we have created VR versions using a game engine, and conducted a user study to get a comparison of how the experience of the traditional artworks differ from the VR versions. The artworks have been created in 3D using algorithmic modelling techniques

    Multi-GPU Rendering with the open Vulkan API

    Get PDF
    The Vulkan API provides a low level interface to modern Graphics Processing Units (GPUs). We demonstrate how to use Vulkan to send commands explicitly to separate GPUs for implementing platform,- and vendor independent multi-GPU rendering. We describe how to implement the sort-first and sort-last approaches to perform parallel rendering with Vulkan. We introduce an abstraction library which we have made available, and an application for multi-GPU rendering of meshes. Performance benchmarks have been performed in order to evaluate the implementation. We also show that we can utilize the additional GPU memory from multiple GPUs to render larger data sets than possible with a single GPU

    Supporting School Aged Children to Train Their Vision by Using Serious Games

    No full text
    Several children struggle with vision difficulties caused by problematic coordination between their left and right eye muscles, i.e., oculomotor dysfunction (OMD). Many OMDs can be improved by training the eyes via physical exercises defined and supervised by vision experts. The aim of this paper is to investigate the feasibility of utilizing Serious Games (SGs) and eye-tracking technologies (ETs) for training the eyes of children having OMD. Via these activities, a trainee can, with her eye gaze, follow objects which are moving, change their directions and speed, or pop up on the screen. The results present mapping the current physical training goals to activities for SGs using input from ETs, and illustrate this correspondence for designing and developing six games. The games’ feasibility evaluation is done via semistructured interviews and evaluating user experiences. Three vision teachers (VTs) were involved in design and development, ensuring achievement of training goals, and five VT students in evaluations. The findings demonstrate the potential of using SGs and ETs to train OMD and point to future needs for improvements

    Supporting School Aged Children to Train Their Vision by Using Serious Games

    No full text
    Several children struggle with vision difficulties caused by problematic coordination between their left and right eye muscles, i.e., oculomotor dysfunction (OMD). Many OMDs can be improved by training the eyes via physical exercises defined and supervised by vision experts. The aim of this paper is to investigate the feasibility of utilizing Serious Games (SGs) and eye-tracking technologies (ETs) for training the eyes of children having OMD. Via these activities, a trainee can, with her eye gaze, follow objects which are moving, change their directions and speed, or pop up on the screen. The results present mapping the current physical training goals to activities for SGs using input from ETs, and illustrate this correspondence for designing and developing six games. The games’ feasibility evaluation is done via semistructured interviews and evaluating user experiences. Three vision teachers (VTs) were involved in design and development, ensuring achievement of training goals, and five VT students in evaluations. The findings demonstrate the potential of using SGs and ETs to train OMD and point to future needs for improvements

    Theoretical Rationale for Design of Tasks in a Virtual Reality-Based Exergame for Rehabilitation Purposes

    Get PDF
    Virtual reality games are playing a greater role in rehabilitation settings. Previously, commercial games have dominated, but increasingly, bespoke games for specific rehabilitation contexts are emerging. Choice and design of tasks for VR-games are still not always clear, however; some games are designed to motivate and engage players, not necessarily with the facilitation of specific movements as a goal. Other games are designed specifically for the facilitation of specific movements. A theoretical background for the choice of tasks seems warranted. As an example, we use a game that was designed in our lab: VR Walk. Here, the player walks on a treadmill while wearing a head-mounted display showing a custom-made virtual environment. Tasks include walking on a glass bridge across a drop, obstacle avoidance, narrowing path, walking in virtual footsteps, memory, and selection tasks, and throwing and catching objects. Each task is designed according to research and theory from movement science, exercise science, and cognitive science. In this article, we discuss how for example walking across a glass bridge gives perceptual challenges that may be suitable for certain medical conditions, such as hearing loss, when perceptual abilities are strained to compensate for the hearing loss. In another example, walking in virtual footsteps may be seen as a motor and biomechanical constraint, where the double support phase and base of support can be manipulated, making the task beneficial for falls prevention. In a third example, memory and selection tasks may challenge individuals that have cognitive impairments. We posit that these theoretical considerations may be helpful for the choice of tasks and for the design of virtual reality games
    corecore